From Tol2Kit
Jump to: navigation, search
m (What you will need)
(Growing up clones)
Line 10: Line 10:
  
 
However, note that ''destination vectors'' and ''donor vectors'' have an ampicillin resistance gene in the backbone, and both a ''ccdB'' suicide gene and a chloramphenicol resistance gene in the "gate" (the ''ccdB'' provides negative selection during the BP or LR reaction). Therefore these clones '''must''' be grown in ampicillin/chloramphenicol, in ccdB-tolerant cells (available from Invitrogen). In addition, we have found that certain destination vectors and donor vectors are prone to recombination or mutation, so at a minimum you should test each DNA prep by careful restriction analysis.
 
However, note that ''destination vectors'' and ''donor vectors'' have an ampicillin resistance gene in the backbone, and both a ''ccdB'' suicide gene and a chloramphenicol resistance gene in the "gate" (the ''ccdB'' provides negative selection during the BP or LR reaction). Therefore these clones '''must''' be grown in ampicillin/chloramphenicol, in ccdB-tolerant cells (available from Invitrogen). In addition, we have found that certain destination vectors and donor vectors are prone to recombination or mutation, so at a minimum you should test each DNA prep by careful restriction analysis.
 +
 +
The following concentrations of antibiotics are used: ampicillin (100 ug/ml), kanamycin (50 ug/ml), and chloramphenicol (30 ug/ml).  These concentrations apply to selection on plates as well as in liquid culture.
  
 
== What you will need ==
 
== What you will need ==

Revision as of 23:52, 25 February 2007

Here are optimized methods and tips from the Chien lab, adopted after trial and error, which work consistently in our hands. See the Invitrogen multisite Gateway manual for all of the basic information necessary to understand and perform Gateway recombination reactions. See also the Gateway tips on the Lawson lab website.

Please report problems or questions on the Tol2kit blog.

As a first test, we suggest that you grow up entry clones and perform a test LR reaction with pDestTol2pA2 or pDestTol2CG2 to make an expression clone such as bactin2:EGFP-pA.

Growing up clones

Entry clones are kanamycin-resistant and can be transformed and grown in any standard E. coli strain.

However, note that destination vectors and donor vectors have an ampicillin resistance gene in the backbone, and both a ccdB suicide gene and a chloramphenicol resistance gene in the "gate" (the ccdB provides negative selection during the BP or LR reaction). Therefore these clones must be grown in ampicillin/chloramphenicol, in ccdB-tolerant cells (available from Invitrogen). In addition, we have found that certain destination vectors and donor vectors are prone to recombination or mutation, so at a minimum you should test each DNA prep by careful restriction analysis.

The following concentrations of antibiotics are used: ampicillin (100 ug/ml), kanamycin (50 ug/ml), and chloramphenicol (30 ug/ml). These concentrations apply to selection on plates as well as in liquid culture.

What you will need

Here are the specific reagents required for working with the Tol2Kit, including Invitrogen catalog numbers. Where more than one catalog number is listed, this reflects the different sizes available.

BP Clonase II Enzyme Mix (11789-020, 11789-100): for generating entry clones. Note: unlike BP Clonase, which had a separate buffer, BP Clonase II includes the buffer in the enzyme mix.

LR Clonase II Plus Enzyme Mix (12538-120, 12538-200): for generating expression constructs via the multi-site reaction. Note: LR Clonase II (no Plus) is a different enzyme, to be used for "classic" (non-multisite) Gateway reactions. Note: make sure to store LR Clonase II Plus at -80 degrees, as it seems to be especially labile. (We usually also store the BP Clonase II and of course the One Shot cells at -80 degrees.)

One Shot ccdB Survival Competent Cells (C7510-03): for propagation of empty donor and destination vectors.

One Shot TOP10 Chemically Competent E. coli (C4040-10, C4040-03, C4040-06): for transformation of LR reactions. Note: do NOT use One Shot TOP10F' cells; these will not show a difference in clear and opaque colonies (see below).

Note that the Tol2kit is based on the original three-part multisite Gateway system (as described in the manual from 11/29/04), in which destination vectors use attR4-R3 sites, not the new Multisite Gateway Pro system, in which all the destination vectors use attR1-R2 sites. While the donor, entry, and destination vectors are incompatible with the Pro system (different sets of att sites are used), the BP and LR enzyme mixes are still the same.

BP Reactions

Donor Vectors
(under construction)

PCR Amplification of DNA
Primers for PCR are designed as described in the multisite Gateway Manual. This results in primers that are quite long (regularly >50 bases), but we have not had difficulty performing PCR with these primers. This list of att site sequences may be useful.

We have used two different polymerases for PCR: Tth (GeneAmp XL PCR Kit; Applied Biosystems) and Phusion (NEB). Both are proofreading polymerases that can amplify long pieces of DNA, although for particularly difficult and/or long promoters, Phusion has worked better. For each, PCR was performed in a 50 ul reaction.

Purification of PCR products
The entire PCR reaction (50 ul) is loaded onto an agarose gel. The appropriate band is excised and DNA purification performed using the Qiagen Qiaquick Gel Extraction Kit (for DNA fragments <10 kb; for larger fragments, use the QIAEX Gel Extraction Kit). Elute the DNA in 30 ul (the smallest recommended volume). The concentration of DNA is calculated using a spectrophotometer; the DNA will be quite dilute and not terribly clean (usually between 10-80 ng/ul, and OD 260/280 ~1.4-1.6).

Do not let the gel-purified DNA sit in the freezer for too long before using in the recombination reaction. In practice, we go straight into the recombination reaction; a better stopping point is to freeze either the entire PCR reaction or the gel slice before purification. We have found that storing the DNA in the freezer for even a couple of days decreases the efficiency of recombination.

BP Recombination Reactions
The recombination reaction is performed as described in the Invitrogen Multi-Site Gateway Manual. An equimolar amount of the appropriate donor vector and purified PCR product (commonly 50-100 femtomoles) are combined with TE and BP Clonase II enzyme mix in a final volume of 10 ul. This reaction is usually allowed to incubate overnight at room temperation, however, we have found (as the manual also suggests) that as little as 2 hours can be enough. This reaction almost always works well.

Transformation, Plasmid Prep, and Diagnostic Digests
The BP reaction is treated with Proteinase K and transformed. Typically, 2 ul of the 10 ul reaction is sufficient. The Invitrogen Manual recommends OneShot TOP10 cells, but cells of this high competence are not necessary. Subcloning efficiency cells and also homemade competent cells have worked well, yielding hundreds to thousands of colonies per plate. We typically pick 4 colonies for minipreps, and these are almost always the correct clone. Check by restriction, and then by sequencing for PCR errors. For restriction tests, we try to pick enzymes that do not cut in the att sites (which are recognized by several standard 6-cutters). Pvu II is often useful, as are EcoRV and HindIII.

Note: the clear/opaque difference in colonies applies only to transformants from the LR reaction, not this (the BP) reaction.

LR reactions

Recombination Reactions
The recombination reaction is performed with slight modifications from the protocol in the Invitrogen Multi-Site Gateway Manual. Equimolar amounts of entry vectors (5', middle, and 3') and destination vector are combined with LR Clonase II Plus enzyme mix and buffer. We standardly set up reactions with 20 femtomoles of each vector. The manual contains a protocol for a 20 ul reaction; we halve everything and set up 10 ul reactions. This saves enzyme and therefore, money. Other labs have found that quarter reactions (5 ul) work as well.

We always allow this reaction to go overnight at room temperature. The reaction tends to be less efficient than the BP reaction, likely because of the number of components involved.

Transformation, Plasmid Prep, and Diagnostic Digests
As with the BP reaction, the LR reaction is treated with Proteinase K and then transformed. We typically transform 3 ul of the 10 ul reaction, using Invitrogen OneShot TOP10 cells. Because this reaction is less efficient than the BP reaction, cells of this high competence are necessary. The protocol for these cells recommends shaking at 37 degrees for one hour after heat shock. Instead, we typically shake for 1.5 hours, just to give the cells more time to grow before selection. We then plate all 300 ul onto the LB/amp plate. Particular LR recombination reactions can be less efficient than others (see below), and we believe that giving the culture one more doubling time will increase the chance that the correct clone can be isolated.

This reaction is plated onto ampicillin plates; carbenicillin works as well. We typically find hundreds of colonies per plate. We do not plate the reaction before 3 pm, as satellite colonies can be a significant problem, obscuring the results of the reaction. Plates are removed from the 37 degree incubator first thing the next morning; this provides the best chance to distinguish clear from opaque colonies. If it is difficult to tell clear from opaque, looking at the plate in front of a dark background (we use a black refrigerator) will help. The image below shows examples of clear and opaque colonies on the same plate.

Clear-opaque.png

Plates can be left at room temperature until clear colonies are picked in the afternoon. We have found that clear colonies contain the correct clone >99% of the time, while opaque colonies never contain the correct clone. A reaction that has worked well will have a clear to opaque colony ratio of at least 3:1. However, as long as clear colonies can be identified, the correct clone will be isolated.